metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Wei-Jin Gu,^{a,b} Yi-Zhi Li,^a Yi Pan^a* and San-Hui Liu^a

^aCoordination Chemistry Institute. State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ^bDepartment of Applied Chemistry, Naniing Normal University, Nanjing 210097, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.037 wR factor = 0.085 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dimethyl[4-methyl-2,6-bis(phenyliminomethyl)phenolato- $\kappa^2 N$,O]gallium(III)

The title compound, $[Ga(CH_3)_2(C_{21}H_{17}N_2O)]$, synthesized by the reaction of trimethylgallium and 4-methyl-2,6-bis(phenyliminomethyl)phenol, has the Ga atom in a tetrahedral geometry; two molecules form a dimer through a $\pi - \pi$ interaction.

Received 19 January 2005 Accepted 22 February 2005 Online 4 March 2005

Comment

Among the organometallic derivatives of group 13 elements (Atwood & Harvey, 2001; Chitsaz & Neumuller, 2001; Peters et al., 1998), the trialkylgallium(III) compounds are able to react with ligands having active hydrogen to furnish compounds having N-Ga-N (Park et al., 2000), N-Ga-O (Hill et al., 2001) or N-Ga-S (Shen et al., 2003) linkages. The title compound, (I), with the 4-methyl-2,6-bis(phenyliminomethyl)phenolate ligand displays an N-Ga-O coordination mode (Fig. 1 and Table 1).

The O1-Ga1-N2 angle is marginally larger than that of dimethyl(N-salicylidenne-2-aminopyridine)gallium

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted.

[90.76 (7)°; Shen *et al.*, 2000], and the Ga1–O1 and Ga1–N2 bond distances are comparable with those reported for *N*,*N*ethylene(salicylideneiminato)bis(dimethylgallium) [1.869 (2)/ 1.874(2) and 2.026 (3)/2.035(3) Å; Chong *et al.*, 1977]. There is a π - π interaction (Fig. 2) that leads to the formation of dimers [*Cg*1···*Cg*1ⁱ = 3.50 (2) Å, where *Cg*1 is the centroid of ring C1–C6; symmetry code: (i) 1 – *x*, 1 – *y*, 1 – *z*].

Experimental

To a benzene solution (4 ml) of trimethylgallium (0.2 ml, 2 mmol) was added a benzene solution (4 ml) of 4-methyl-2,6-bis(phenyliminomethyl)phenol (0.629 g, 2 mmol) and the resulting mixture was stirred for 40 min at room temperature. The solvent was removed. Orange block-shaped crystals were obtained by recrystallizing the orange powder from cyclohexane–benzene (0.58 g, 70% yield). Analysis calculated for $C_{23}H_{23}GaN_2O$: C 66.86, H 5.61, N 6.78%; found: C 66.60, H 5.82, N 6.98%.

> $D_x = 1.341 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 3581

reflections $\theta = 2.5-25.4^{\circ}$ $\mu = 1.36 \text{ mm}^{-1}$ T = 293 (2) KBlock, orange $0.30 \times 0.20 \times 0.20 \text{ mm}$

Crystal data

[Ga(CH ₃) ₂ (C ₂₁ H ₁₇ N ₂ O)]
$M_r = 413.15$
Monoclinic, $P2_1/c$
a = 9.498 (1) Å
b = 13.028 (1) Å
c = 16.598 (2) Å
$\beta = 95040$
$V = 2045.9 (4) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART APEX CCD area-	4013 independent reflections
detector diffractometer	2790 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.068$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Bruker, 2000)	$h = -11 \rightarrow 11$
$T_{\min} = 0.73, T_{\max} = 0.76$	$k = -14 \rightarrow 16$
10679 measured reflections	$l = -20 \rightarrow 17$
Definence	

Refinement

H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.025P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ga1-O1	1.8843 (18)	Ga1-C22	1.942 (3)
Ga1-N2	2.045 (2)	Ga1-C23	1.943 (3)
O1-Ga1-C22	107.56 (11)	N2-Ga1-C22	110.83 (11)
O1-Ga1-C23	108.87 (11)	N2-Ga1-C23	103.40 (11)
O1-Ga1-N2	90.81 (8)	C22-Ga1-C23	128.77 (14)

The H atoms were positioned geometrically and refined as riding, with C–H distances 0.93 or 0.96 Å (C_{methyl}), and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$. Methyl groups were rotated to fit the electron density.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve

Figure 2

A view of the packing of the title compound. The dashed line shows the weak π - π interaction [symmetry code: (i) 1 - x, 1 - y, 1 - z]. H atoms have been omitted.

structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the National 863 High Technology Program and the Nanjing University Talent Development Foundation (No. 0205005122) for financial support.

References

Atwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37-52.

Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Chitsaz, S. & Neumuller, B. (2001). Organometallics, 20, 2338-2343.

Chong, K. S., Rettig, S. J., Storr, A. & Trotter, J. (1977). Can. J. Chem. 55, 2540–2546.

Hill, M. S., Hutchison, A. R., Keizer, T. S., Parkin, S., Van Aelstyn, M. A. & Atwood, D. A. (2001). J. Organomet. Chem. 628, 71–75.

Park, J. E., Bae, B. J., Lee, K., Park, J. T., Chang, H. Y. & Choi, M. G. (2000). Organometallics, 19, 5107–5112.

- Peters, D. W., Power, M. P., Bourret, E. D. & Arnold, J. (1998). J. Chem. Soc. Chem. Commun. pp. 753–754.
- Shen, Y. Z., Gu, H. W., Gu, W. J., Yuan, F., Zhu, Y. & Pan, Y. (2003). J. Organomet. Chem. 681, 51–58.

Shen, Y. Z., Gu, H. W., Pan, Y., Dong, G., Wu, T., Jin, X. P., Huang, X. Y. & Hu, H. W. (2000). J. Organomet. Chem. 605, 234–238.